domingo, 19 de febrero de 2012

COORDENADAS POLARES


COORDENADAS POLARES

 Localización de un punto en coordenadas polares.

El sistema de coordenadas polares es un sistema de coordenadas dimensional en el cual cada punto o posición del plano se determina por un ángulo y una distancia.

De manera más precisa, todo punto del plano corresponde a un par de coordenadas (r, θ) donde r es la distancia del punto al origen o polo y θ es el ángulo positivo en sentido antihorario medido desde el eje polar (equivalente al eje x del sistema cartesiano). La distancia se conoce como la «coordenada radial» o «radio vector» mientras que el ángulo es la «coordenada angular» o «ángulo polar».

En el caso del origen de coordenadas, el valor de r es cero, pero el valor de θ es indefinido. En ocasiones se adopta la convención de representar el origen por (0,0º).

  • El punto (3, 60º) indica que está a una distancia de 3 unidades desde O, medidas con un ángulo de 60º sobre OL.
  • El punto (4, 210º) indica que está a una distancia de 4 unidades desde O y un ángulo de 210º sobre OL.

Un aspecto importante del sistema de coordenadas polares, que no está presente en el sistema de coordenadas cartesianas, es que un único punto del plano puede representarse con un número infinito de coordenadas diferentes. Se puede decir entonces que en el sistema de coordenadas polares no hay una función biyectiva entre los puntos del espacio y las coordenadas. Esto ocurre por dos motivos:

Un punto, definido por un ángulo y una distancia, es el mismo punto que el indicado por ese mismo ángulo más un número de revoluciones completas y la misma distancia. En general, el punto (r, θ) se puede representar como (r, θ ± n×360°) o (−r, θ ± (2n + 1)180°), donde n es un número entero cualquiera.[4]

  • El centro de coordenadas está definido por una distancia nula, independientemente de los ángulos que se especifiquen. Normalmente se utilizan las coordenadas arbitrarias (0, θ) para representar el polo, ya que independientemente del valor que tome el ángulo θ, un punto con radio 0 se encuentra siempre en el polo.[5] Estas circunstancias deben tenerse en cuenta para evitar confusiones en este sistema de coordenadas. Para obtener una única representación de un punto, se suele limitar r a números no negativos r ≥ 0 y θ al intervalo [0, 360°) o (−180°, 180°] (en radianes, [0, 2π) o (−π, π]).[6]
Los ángulos en notación polar se expresan normalmente en grados o en radianes, dependiendo del contexto. Por ejemplo, las aplicaciones de navegación marítima utilizan las medidas en grados, mientras que algunas aplicaciones físicas (especialmente la mecánica rotacional) y la mayor parte del cálculo matemático expresan las medidas en radianes. 


ECUACIONES POLINOMICAS


CONCEPTO ECUACION POLINOMICA
Una raíz del polinomio p es un complejo z tal que p(z)=0. Un resultado importante de esta definición es que todos los polinomios de grado n tienen exactamente n soluciones en el campo complejo, esto es, tiene exactamente n complejos z que cumplen la igualdad p(z)=0, contados con sus respectivas multiplicidades. A esto se lo conoce como Teorema Fundamental del Álgebra, y demuestra que los complejos son un cuerpo algebraicamente cerrado. Por esto los matemáticos consideran a los números complejos unos números más naturales que los números reales a la hora de resolver ecuaciones.
¿Cómo resolver una ecuación de primer grado?
Para la resolución de ecuaciones de primer grado podríamos definir un esquema con los pasos necesarios. Para empezar comencemos con una ecuación de primer grado sencilla: 9x − 9 + 108x − 6x − 92 = 16x + 28 + 396 Nuestro objetivo principal es dejar sola la x en uno de los términos, el izquierdo o el derecho.

1- TRANSPOSICIÓN

Lo primero que debemos hacer es colocar los términos con X en un lado, y los números enteros en otro. Para ello, podemos ver que hay algunos números que tendremos que pasarlos al otro termino. Esto lo podemos hacer teniendo en cuenta que: Si el número esta restando (Ej: −6): Pasa al otro lado sumando (+6) Si el número esta sumando (Ej: +9): Pasa al otro lado restando (−9) Si el número esta multiplicando (Ej: •2) Pasa al otro lado dividiendo (en forma fraccionaria) (n/2) Si el número esta dividiendo (en forma fraccionaria) (Ej: n/5) Pasa al otro lado multiplicando (•5) Una vez hemos pasado todos los términos en nuestra ecuación, esta quedaría así: 9x + 108x − 6x − 16x = 28 + 396 + 9 + 92 Como podrás comprobar todos los monomios con X han quedado a la izquierda del signo igual, y todos los números enteros se han quedado en la derecha.

SIMPLIFICACIÓN:

Nuestro siguiente objetivo es convertir nuestra ecuación en otra equivalente más simple y corta, por lo que realizaremos la operación de polinomios que se nos plantea Es decir en nuestro caso, por un lado realizamos la operación: 9x+108x-6x-16x Y por otro lado: 28+396+9+92 De forma que nuestra ecuación pasaría a ser esta: 95x = 475

DESPEJAR:

 Ahora es cuando debemos cumplir nuestro objetivo final, dejar la X completamente sola, para ello volveremos a recurrir a la transposición. Es decir, en nuestra ecuación deberíamos pasar el 95 al otro lado, y, como está multiplicando, pasa dividiendo: x = 475 / 95 Comprueba que el ejercicio ya está teóricamente resuelto, ya que tenemos una igualdad en la que nos dice que la x ocultaba el número 475/95. Lo desarrollamos  y obtenemos  nuestro resultado.


Teorema de De Moivre


Teorema de De Moivre


Las potencias enteras de un número complejo no nulo z = re vienen dadas por
z = rneinθ (n = 0, +1, -1, +2, -2 ...)
Como zn+1 = zzn cuando n=1,2,..., esto se comprueba fácilmente para valores positivos de n por inducción, para el producto de números complejos en forma exponencial. La ecuación es válida también para n = 0 con el convenio de que z0 = 1. Si n = -1, -2..., por otro lado, definimos zn en términos del inverso multiplicativo de z escribiendo zn = (z-1)m, donde m = -n = 1, 2, ... Entonces, como la ecuación z = rneinθ es válida para potencias enteras positivas, se sigue de la forma exponencial de z-1 que
zn = [1/r ei(-θ)]m = (1/r)m eim(-θ) = rneinθ
Por tanto, la ecuación z = rneinθ es válida para toda potencia entera.
Nótese que si r = 1, z = rneinθ se convierte en
(e)n = eiθn           (n = 0, ±1, ±2 ...)
Cuando se expresa en la forma

(cos θ + i sen θ)n = cos nθ + i sen nθ

que se le conoce como la fórmula de De Moivre